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1. INTRODUCTION 

WE ARE frequently concerned with natural convection flow 
and the consequent heat transfer that arises over surfaces 
which are at a temperature different from that of the ambient 
medium. In the case of a heated body cooling in an extensive 
isothermal medium, the fluid flows adjacent to the hot surface 
of the body, and this heated fluid eventually rises above the 
body as a buoyant flow or wake. Similarly, a body colder 
than the ambient fluid would cause a flow opposite to that 
due to the heated body, since the fluid adjacent to the body 
becomes colder and hence heavier than the ambient fluid, 
resulting in a flow in the direction of the gravitational force. 
In nature too, many natural or free convection flows occur 
adjacent to heated or cooled surfaces. Free convection can 
have a significant effect on forced flows over solid bodies, 
too. It can alter the flow field and hence the heat transfer 
rate and wall-shear distribution. The simplest physical model 
is two-dimensional, mixed forced and free convection along 
a flat plate. Recent examples of application of this model can 
be found in the areas of reactor safety, combustion flames, 
and solar collectors, as well as building energy conservation. 

Extensive studies [l-9] have been conducted on mixed 
convection along vertical, horizontal, or inclined surfaces. It 
has been generally recognized that {( = Gr/Re’), where Gr is 
the Grashof number and Re the Reynolds number, is the 
governing parameter for a vertical plate. Forced convection 
exists as a limit when 5 goes to zero which occurs at the 
leading edge, and the free-convection limit can be reached if 
e becomes large. Perturbation solutions have been developed 
for both limits, since both forced convection and free con- 
vection have similarity solutions. Empirical patching of two 
perturbation solutions has also been carried out to provide 
a solution by Rajn er al. [IO] which covers the whole range 
of <. They obtained a finite difference solution applying an 
algebraic transformation z = l(1 + <‘). For a horizontal 
plate, the axial pressure gradient induced by buoyancy force 
is O(Gr/Re’ ‘). Numerous solutions have been developed 
by considering the free-convection effect as a perturbation 
quantity. Again, forced convection exists as a limit for small 
5 and the free convection can be reached as < approaches 
infinitely. Recently, Tingwei er al. [I I], have studied the 
effect of forced and free convection along a vertical flat 
plate with uniform heat fiux considering that the buoyancy 
parameter r to be small. 

Effects of transversely applied magnetic field on free con- 
vection of an electrically conducting fluid past a semi-infinite 
plate were studied by many researchers [12-151, because of 
its application in nuclear engineering in connection with the 
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cooling of reactors. In the present note, therefore, we propose 
to investigate the combined forced and free convection of an 
electrically conducting fluid past a vertical flat plate at whose 
surface, the heat flux is uniform and a magnetic field is 
applied parallel to the direction normal to the plate and is 
allowed to pass it along with the fluid. The equations govern- 
ing the flow are developed in Section 2 and are solved numeri- 
cally using the method of superposition for small values of 
C, the buoyancy parameter. 

2. FORMULATION OF THE PROBLEM 

Consider the free convection flow of an electrically con- 
ducting and viscous incompressible fluid up a heated semi- 
infinite flat plate extended vertically in the upward direction. 
Let the temperature of the free-stream be To having the 
velocity I/,, which is uniform. A magnetic field of strength 
B(x) is considered to be applied parallel to the y-axis which 
is normal to the plate and is allowed to move past the plate 
with fluid. Here we assume that the induced magnetic field 
produced by the motion of the electrically conducting fluid 
is negligible. This assumption is valid for smaller magnetic 
Reynolds number. Further. since no external electric tield is 
applied and the effect of polarization of the ionized fluid is 
negligible, we may also assume that the electric field E = 0. 
Under the above assumption the boundary layer equations 
governing the flow past a plate at whose surface the heat flux 
4 is uniform, are (Cobble [ 141) 

u~+“~=gp(T-T&u ay ,Jy(V,-u)+v$ 

au at1 -+-_=o 
ax aJ 

subject to the boundary conditions 

u=v=o, -k g =q aty=O 

0 ay 

u-, v,, T-T, asy-,co. (4) 

Here (a, v) are velocity components associated with the 
direction of increasing coordinates (x, y) measured along 
and normal to the plate, respectively. T is the temperature 
of the fluid in the boundary layer, g the acceleration due to 
gravity, /I the coefficient of thermal expansion, k the thermal 
conductivity, u,, the electric conductivity, v the kinematic 
viscosity of the fluid and p the reference density of the sur- 
rounding fluid. 

In formulating equations (l)-(3) it has been assumed that 
(i) the ratio of thermal diffusivity to magnetic diffusivity is 
small compared to unity, (ii) fluid property variations are 
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limited to density variation which is taken into account only 
in so far as it effects the buoyancy terms only, (iii) the short 
circuit assumption applies and (iv) the viscous and electrical 
dissipation effects are neglected. 

Now to reduce equations (l)-(3) to ordinary differential 
equations, we are to introduce the stream function $ 
throughout equations (l)-(3), which is defined in relation 
(5). These yield the expressions to be transformed, equations 
(6) and (7) : 

(7) 

We now introduce the following set of transformation of 
Tingwei et al. [I l] for the dependent and the independent 
variables : 

where 

with 

cI(S,q) = u”(q)+Su,(q)+l~fi:(rl)+ (13) 

and substituting these into equations (9). ( I I) and collecting 
the terms up to O(<?) only. we get : 

order 0 
1,, 

hi 
.., 

+ A./,, f I/ = 0 (14) 

0;; + iu(.f,,o;, -j;,o,,, = 0 (15) 

/i,(O) =./i,(O) = 0. O”(0) = - 1 

f;,(x) = tj(l(x) = 0. (16) 

O(5) 

5 = Gr/Re”’ 

Gr = g/?qx“/kv’, 

into equations (6) and (7) as well as in boundary conditions 
(4). we find 

./(i’.O) =.l”(<.o, = 0, P(5.0) = -I 

f’(S. KJ) = I. O((,O) = 0. 
(11) 

Here primes denote differentiations of the functions with 
respect to n only, a(= v/k) the Prandtl number and 
M[ = (croB~k/pgjlq)( Z/iv) “1 is the magnetic field parameter. 

In the present problem the buoyancy force is proportional 
to <( = Gr/Re’ ‘) and B(s) is assumed to be B,u”*, which 
reflects the local magnitude of the magnetic field at various 
stations of the plate and hence preserve the validity in the 
vicinity of the leading edge. So. the solutionscan be expanded 
as an asymptotic series in 5. This series solution is valid for 
small 5. that is, for forced and free convection near the 
leading edge of the plate, at the region where the free con- 
vection effect is smaller [9]. Hence we consider here 5 to be 
smaller so that we get combined effects of forced and free 
convection on the flow near the leading edge. Accordingly 
we expand the functions ,f(c, a) and O(C, n) in powers of <, 
that is 

/(i’.a) = ~(rl)+gf,(~)+~2/2(~)+... (12) 

(8) 

=a(2f',H,+101,f:-2f1',f,-~H;,12) (21) 

.fT(O) =.f>(O) = K(0) = 0, ‘(x) = Hz(T) = 0. (22) 

The present problem, in the absence of magnetic field, had 
been studied by Tingwei e/ ccl. [I I] using the modified fourth- 
order Runge-Kutta method of Lapidus and Seinfeld [16]. 
But in the present paper we are proposing to study the 
problem in a different approach, the details of which are 
given in the following section. 

3. METHOD OF SOLUTIONS 

From the previous section it is evident that equations (I 5)- 
(22) are linear and may be solved independently one after 
another, since the first equation (14) is the well-known 
Blasius equation the solution of which is already known. 
we therefore first propose to solve equation (15). Since the 
function fO(n) is known, we may reduce the boundary value 
problem provided with equation (I 5) and the boundary con- 
dition (16) by the method of superposition [17] as given 
below. We now write 

O”(V) = (),,l(V)+&12()1) (23) 

and substituting this into equation (15) and the boundary 
conditions (16) to get 

o;,, + iG( fX,, --r;,o,,,) = 0 (24) 
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Table 1. Values of/“,(O), f’;(O), f;(O), f%,(O), O,(O) and t&(O) in absence of magnetic field 

D f$(O) &l(O) .f’;(O) -e,(O) -.f;(O) e,(O) 

0.01 0.33206 8. J4748t 13.0633t 
8.74754 13.0602 

0.10 0.33206 4.939847 
4.94009 

0.70 0.33206 2.463Jlt 
2.46420 

1.0 0.33206 2.17879t 
2.17933 

854192t 
6.54073 

2.486897 
2.4873 1 

2.059837 
2.0603 

10.00 0.33206 1.00212t 0.55473t 
1.00234 0.55492 

t The values are due to Tingwei et al. [I 11. 

17.9801 t 126.949t 407.404t 
17.9301 126.909 407.235 

11.5080t 38.04651 147.422t 
11.5086 39.0515 142.406 

2.84295t 6.24779t 14.8624t 
2.84355 6.24994 14.8677 

2.15080t 4.35316t 9.45458t 
2.15154 4.35509 9.46015 

0.301967 0.33816t 0.38178t 
0.30208 0.33915 0.38216 

8, + iwd~~ -se,,) = 0 (25) Substitution into equation (28) yields 

e,,(o) = 0, e;,(o) = - 1, e,,(o) = 1, eb2(o) = 0. jRe”’ cf =./“(& 0) 

(26) 

The initial conditions (26) are obtained on the assumptions 
that 0,(O) = 1. 

=r;+(&).r;(o)+(7;(0)+.... (30) 

Equations (24)-(26) now constitute a set of initial value 
problems that can be integrated without iteration by the use 
of any initial value solver to give B,, , and tJoz The integrations 
are carried out in the domain 0 < 1 d )I*. From the above 
integrations knowing the values of the functions t&,,(n) and 
e,,(q) at tlr, we find the parameter 1, using the condition 
B,(oo) = 0, from the following relation : 

Finally, in terms of the Nusselt number, the heat transfer 
may be expressed as 

A= -hdwh,w. (27) 

Finally knowing the value of i. from equation (27) one 

+($J8?fo)+.J’. (31) 

finds easily the solution for t7&) from relation (23). During 
the course of integrations, for some values of c the grid size 
Ail as well as rlX had to be changed. For 0.1 < u < 1, An has 
been taken as 0.05. The corresponding values for qa were 
taken as 8, 10 and 12. For these three different values of 9% 
no significant changes in value of A were observed. Again, 
for u >, 1.0, considering An to be 0.02, the solutions are 
obtained with in% = 10. Finally, we have considered the value 
of 61) to be 0.1 and the integrations were carried out with 
r), = 10, 12 and 15. For these values of rlz no significant 
change in the final value of 1 had been observed, even for 
smaller values of u. Therefore, in the present analysis, for 
u 4 0.1 we. took the solutions with rrX = 12. Following the 
same method all of the rest of the boundary value problems 
(17)-(22) are solved one after another. Table 1 compares the 
values of A(O), 0,,(O), .G(O), O,(O), f;(O) and g,(O) with 
those of Tingwei ef al. [ 1 I] for different values of the Prandtl 
number u. 

In the following section the results thus obtained from the 
above analysis are discussed in detail. 

4. RESULTS AND DISCUSSIONS 

In fact, assumptions used to establish the governing 
equation are particularly appropriate to liquid metals. More- 
over, as liquid metals are currently used as coolants in 
engineering. We have pursued solutions into the lower 
Prandtl number ranges, e.g. 0.05 for lithium, 0.01 for mercury 
and 0.005 for sodium. Detailed numerical solutions having 
been obtained for u = 10, 1,O.J. 0.5,0.1,0.05,0.02 and 0.01. 
The numerical integrations of equations (14)-(22) for the 
above values of u were carried out on Gould/9000 main- 
frame of the ICTP, Trieste. Italy. 

Once we know the functions fO, .f,, f2, BO. 6, and f&, we 
may find the velocity distribution from relation (28) 

The velocity distributions obtained from relation (28) are 
shown graphically in Figs. l(a), 2(a), and 3(a). In Fig. l(a) 
the curves represent the velocity profiles for different values 
of the magnetic field parameter when the fluid is air and for 
the value of the buoyancy parameter c = 0.01. From this 
figure it is observed that the presence as well as the increase 
in the magnetic field leads to decrease in the velocity field, 
that is, it retards the flow field. From Figs. 2(a) and 3(a) we 
further observe flow separation or reverse type of flow for 
smaller values of the Prandtl number u (0.05 and 0.01 which 
represent lithium and mercury, respectively), which is un- 
acceptable physically. since the magnetic field can only return 
and not produce flow in the reverse direction [IS, 191. But 
from Fig. 3(a) it is observed that this flow condition can be 
improved by a smaller increment in the buoyancy force in 
the flow field. 

(28) 
and the temperature distribution from the relation 

T- T, e,(rt)+(Gr/Re’:Z)e,(rl)+(Gr/ReS’2)Ze,(rl)+... 
p= 
T, - To e,(o)+(Gr/R~S”)e,(0)+(Gr/Re5’2)e~(O)+~~~ ’ 

(29) 

Knowing the velocity and the temperature distribution one 
can easily find the wall shear stress and the heat transfer rate. 
The wall shear stress may be expressed in terms of the local 
skin-friction coefficient as given below 

250 
cr=--i. 

PU0 

Figures l(b), 2(b) and 3(b) are representing the tem- 
perature distributions in the flow field. In Figs. l(b) and 2(b) 
we see that the presence as well as increase in the magnetic 
field leads to a rise in the temperature distribution in the flow 
field. This further increases owing to a rise in the buoyancy 
force parameter (Fig. 3(b)). 
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FIG. l(a). Velocity profiles against q for u = 0.7, 5 = 0.1 
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FIG. 1 (b). Temperature profiles against n for u = 0.7,< = 0.1 
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FIG. 2(a). Velocity profiles against n for M = 1.0 and for FIG. 3(b). Temperature profiles against q for 5 = 0. I and for 
different values of D and 5. different values of CI and M. 
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FIG. 3(a). Velocity profiles against q for < = 0.1 and for 
different values of 0 and M. 
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Table 2. Values of local skin-friction coefficient and the Nusselt number for r = 0.1 

M 

0.0 
0.5 
1.0 
2.0 

o 0.01 

0.36389 
0.29276 
0.21064 
0.2878 

2J(Re) cr 
0.1 

0.59561 
0.57852 
0.55553 
0.49190 

0.7 0.01 

0.51829 0.09066 
0.54226 0.08832 
0.56035 0.08598 
0.57885 0.08141 

-Re’ ’ Nu 
0.1 

0.19181 
0.18610 
0.18012 
0.16766 

0.7 

0.42945 
0.42729 
0.42240 
0.40523 

In Table 1 we have entered the values of f’;(O), f’;(O), 
f;(O), 6,(O), 0, (0) and f&(O) for different values of the Prandtl 
number in the absence of the magnetic field for comparison 
with the results of Tingwei et al. [I 11. It can easily be seen 
that the largest difference between the present values and the 
corresponding values of Tingwei et al. are less than 2%. The 
value of f;(O) for D = 0.1 obtained by Tingwei ef al. which 
is 8.54192, must be a misprint, since the more accurate one 
is 6.54192. Finally Table 2 represents the values of the wall 
shear stress and the rate of heat transfer in terms of skin- 
friction coefficient and Nusselt number, respectively, for 
magnetic field parameter M = 0.0,0.5, 1.0,2 and for Prandtl 
number u = 0.01, 0.1 and 0.7 at 5 = 0. I. From this table one 
may conclude that the value of the skin friction decreases 
whereas that of the heat transfer increases owing to increase 
in the magnetic field strength. 
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